Logo link to homepage

Report on Soufriere Hills (United Kingdom) — February 1998


Soufriere Hills

Bulletin of the Global Volcanism Network, vol. 23, no. 2 (February 1998)
Managing Editor: Richard Wunderman.

Soufriere Hills (United Kingdom) Dome growth continues; discussion of the 26 December dome collapse

Please cite this report as:

Global Volcanism Program, 1998. Report on Soufriere Hills (United Kingdom) (Wunderman, R., ed.). Bulletin of the Global Volcanism Network, 23:2. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN199802-360050



Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


The following summarizes a scientific report of the Montserrat Volcano Observatory (MVO) for 18 January-1 February, a time period when seismic and volcanic activity were low but dome growth continued. In addition, this report condenses MVO's Special Report 6 on the 26 December 1997 dome collapse, perhaps the most intense outburst yet recorded during the current crisis.

Visual observations. Few views of the dome complex were obtained due to poor visibility until the end of January, when observers saw active growth in the crater left by the 26 December 1997 dome collapse in the volcano's SW sector (BGVN 22:12). Also reported were occasional rockfalls, ash venting, steaming, and a dilute steam-and-ash plume that drifted WNW. Ash venting and rockfall activity became slightly more vigorous at the end of January, when a shift in prevailing winds sent light ashfall to the N part of the island.

Seismicity. Rockfall signals dominated seismicity; most coincided with a seismic-amplitude cycle with a periodicity of ~12 hours. This regular, slight increase in seismicity despite any major events has continued since the 26 December collapse and has been interpreted to indicate cyclical degassing as the dome grew.

Ground deformation. Displacement vectors for the interval April/May 1997 to January 1998 for sites around the volcano (table 25) revealed that areas NE, E, and SE of the volcano had been significantly displaced. The sector between Whites, Hermitage, and Roches Yard had moved ~6 cm NNE. Similar measurements at Long Ground, Tar River, and Perches suggested that these sites were displaced as a homogenous unit with little deformation. The Hermitage site showed considerably more movement than the others. Because of its proximity to the dome, it may have been more strongly influenced by local pressure or loading effects. Distant sites on the volcano's W and N flanks (Dagenham, Old Towne and Windy Hill) showed less displacement.

Table 25. Displacement vectors during April 1997-January 1998 for sites around Soufriere Hills. The site at Harris is the baseline. The Tar River vector reflects readings beginning in March 1997; the Roches Yard vector, beginning in October 1996. Courtesy of MVO.

Site Displacement (mm) Vector (degrees from grid north)
Whites 25 353
Long Ground 66 033
Hermitage 100 026
Tar River 57 030
Perches 59 049
Roches Yard 66 342
Windy Hill 15 283
Dagenham 16 077
Old Towne (M27) 19 084

New GPS sites were established on the summit of Gages Mountain and in the N part of the island at Drummond's and Blakes. A triple-prism EDM reflector was installed on the remnant of Peak B, a piece of the crater wall between Tuitt's and Mosquito Ghauts. The reflector was installed less than 100 m from the dome's N limit and, along with the new GPS sites, will monitor the N flanks.

Environmental monitoring. Results from diffusion tubes revealed slightly elevated SO2 levels (11.5 ppb) at St. George's Hill. On 24 January new tubes were placed at various sites on the W side of island. Geochemical sampling showed that all samples had3) at the CPS site (~7 km NNW of the volcano), presumably due to human activity in this area.

Report on the 26 December dome collapse. The collapse occurred early on 26 December 1997 after the very rapid dome growth that followed the explosive phase of September-22 October 1997 (BGVN 22:09-22:11). Dome growth within the explosion crater and large lobes extruding N and S formed a large dome over the Galway's Wall attaining a summit elevation of 1,020 m (figure 38), the greatest dome height since the eruption began. Seismic activity was generally low but a hybrid swarm beginning at 1430 on 24 December merged to continuous tremor a few hours before the collapse.

Figure (see Caption) Figure 38. Cross-section of the Galway's Wall area prior to and after the 26 December dome collapse. "A" is presented as a reference point on figure 39. "Before" information is based on survey data from 23 November and 8 December as well as from video and photographs. "After" is based on information from video and photographs. Courtesy of MVO.

The slope failure and dome collapse occurred at about 0300 and lasted ~15 minutes. Seismic evidence provided information on the duration of the event and the timing of specific phenomena, but reconstruction of the event has been done chiefly by evaluating deposits, changes in dome and flank morphology, and changes due to material transportation processes.

The event included a debris avalanche from the Galway's Wall and Galway's Soufriere areas and the consequent collapse of a destabilized portion of the lava dome (figures 38 and 39). The debris avalanche moved down the SW flank following the White River, leaving deposits through much of the valley; these deposits were later blanketed by pyroclastic-flow deposits. A portion of the material may have reached the ocean, generating a small tsunami (BGVN 22:12). The dome collapse produced pyroclastic flows and ash-cloud surges within the White River valley; a considerable volume of this material may have also reached the sea.

Figure (see Caption) Figure 39. Maps of the Galway's Wall area prior to and after the 26 December dome collapse. Both maps have the same scale and orientation. "A" is presented as a reference point on figure 37. "Before" information is based on survey data from 23 November and 8 December as well as video and photographs. "After" map is based on information from video and photographs. Courtesy of MVO.

Very intense pyroclastic surges occurred during the collapse, causing widespread devastation in the area S of Gingoes Ghaut. Some surges were associated with the main flows, but others may have been caused by explosions in the collapsing dome. A convective ash cloud generated by the pyroclastic flows and surges rose ~14.3 km and deposited fine ash over SW Montserrat.

Deposits. Five main depositional units from the 26 December event were identified (figure 40): debris-avalanche deposits, block-and-ash flow deposits, pyroclastic-surge deposits, co- ignimbrite fallout, and a possible blast deposit.

Figure (see Caption) Figure 40. Map of deposits from the 26 December dome collapse. Arrows indicate orientation of trees that were blown down. Courtesy of MVO.

A ~500 m wide, 25-70 m thick debris-avalanche deposit covered the central delta and lower reaches of the White River valley. The hummocky, orange-brown debris was poorly sorted, coarse, and blocky with an irregular bulbous ~25 m-high front. The deposit resulted from a slope failure of hydrothermally altered rocks in the Galway's Soufriere area, the lower outward flank of the Galway's Wall, and the overlying apron of fresh dome talus. Much of the material had a smoothed, heavily scoured upper surface with discontinuous remnants of pre- existing hydrothermally altered stratigraphy preserved within the deposit.

Block-and-ash deposits left by pyroclastic flows were similar to previous dome collapse flows at Soufriere Hills. They comprised dense to slightly vesicular (friable-textured) blocks in a poorly sorted, ash-rich matrix with little internal organization. The pyroclastic flows were largely confined to the White River valley, although some material spilled out at the river bend (~1.7 km from the coast) and traveled towards Morris'. The flows produced erosion features over the area between the White River valley and Morris' village. The block-and- ash deposits ponded behind and on top of the debris-avalanche deposits, filling the remainder of the White River valley to a maximum depth of 50-70 m. Block-and-ash deposits on the river delta were relatively thin (50-70 cm), broad, and flat-lying. They were poorly sorted with blocks reaching a maximum size of about 1 m (blocks >0.1 m formed ~10% of the surface).

Surge deposits associated with the collapse covered 9.1 km2 around the volcano's S flanks. Quite variable, some deposits differed markedly from previous surge deposits associated with pyroclastic-flow emplacement at Soufriere Hills. Conventional ash-cloud-surge deposits were found E of the White River valley on the delta and in the Trials area. These deposits were composed of a fine grained, ash-rich, and sandy layer (6-10 cm thick) with an underlying thin (0.5-2 cm) fines-depleted coarse sand layer. The surge deposits between the White River valley and German's Ghaut varied but the dominant facies was a 15-40 cm-thick, coarse sand/gravel fines- depleted unit. In some areas this deposit was overlain by a second fine-grained surge deposit. The coarse surge deposits largely comprised sub-angular dense dome rock and crystals with little pumiceous or friable component.

Small secondary pyroclastic-flow deposits with abundant charcoal occurred in the deep ghauts that drain the area covered by the surge deposits. One of these flows drained towards the E side of Soufriere Hills down Dry Ghaut. The thin, highly mobile flow was confined to the bottom of the ghaut (average width of 2-4 m) and extended to within 300 m of the sea. The deposit was poorly sorted and 50-70 cm thick, consisting predominantly of fine ash-rich sand.

A possible blast deposit was found on the volcano's SW flank between Gingoes Ghaut and the White River. The deposit comprised angular to sub-angular lithic clasts scattered on the surface, some up to 70 cm in diameter. The surface of the deposit was very subtly corrugated in the flow direction, suggesting a highly energetic emplacement mechanism.. This deposit was distinctly different from thinly spread 'normal' facies block- and-ash flows as it was locally only one clast thick and was completely fines depleted. Dense, fresh, angular dome rock made up most of the deposit, with small amounts of altered dome rock and sub-rounded, semi-vesicular, steely blue-gray dome rock. There was a marked lack of impact craters, bread crust-textured clast, or any ballistic blocks.

Co-ignimbrite ash covered most of the SW part of Montserrat and draped all the 26 December deposits, although heavy rains in early January altered the deposit. Near the coast in the Trials area the co- ignimbrite ash fell as accretionary lapilli, caused by incorporation of steam generated by hot material entering the ocean. The accretionary lapilli were up to 8 mm in diameter and formed a layer up to 4 cm thick. The fine-grained, crystal- rich ash was typical of ash generated from pyroclastic flows sourced from dome collapse. The co-ignimbrite ash plume reached an altitude of ~14 km and light ash fall was reported from Guadeloupe (60 km SSW), as well as St. Vincent and Bequia (both ~400 km SSW).

Temperatures determined from the various deposits several days after the eruption had values up to 293°C (table 26). The debris-avalanche deposit was mainly emplaced cold, although parts of the Galway's Soufriere and dome talus debris would have been warm at the time of incorporation into the avalanche.

Table 26. Temperature measurements for deposits from the 26 December collapse. 'PF' refers to pyroclastic flow; 'DAD', to the debris-avalanche deposit. Courtesy of MVO.

Deposit type Location Measurement depth (cm) Days after event Temp (°C)
Secondary PF Dry Ghaut 20 4 48
Secondary PF Dry Ghaut 25 4 138
Secondary PF Dry Ghaut 35 4 122
Surge White River delta 30 9 155
Surge White River delta 60 9 216
Surge White River delta 30 9 228
Surge White River delta 30 9 83
Surge White River delta 50 9 93
Fumarole White River delta 30 9 68
Surge/PF over DAD 20 13 157
Surge/PF over DAD 25 13 103
Surge/PF over DAD 60 13 293

Geological Summary. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), c/o Chief Minister's Office, P. O. Box 292, Plymouth, Montserrat (URL: http://www.mvo.ms/).