Logo link to homepage

Report on Soufriere Hills (United Kingdom) — April 1998


Soufriere Hills

Bulletin of the Global Volcanism Network, vol. 23, no. 4 (April 1998)
Managing Editor: Richard Wunderman.

Soufriere Hills (United Kingdom) Low seismic and volcanic activity during March-early April

Please cite this report as:

Global Volcanism Program, 1998. Report on Soufriere Hills (United Kingdom) (Wunderman, R., ed.). Bulletin of the Global Volcanism Network, 23:4. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN199804-360050



Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


The following report condenses scientific reports of the Montserrat Volcano Observatory (MVO) for 1 March-12 April 1998. In February there was rapid dome growth and elevated seismicity (BGVN 23:03). However, during 1-15 March volcanic and seismic activity declined. Although spines grew in the summit area early in the month, there was no sign of dome growth after 9 March. During 15 March-12 April activity remained low.

Visual observations. The dome's summit area on 1 March was blocky with a small number of stumpy spines. The summit's highest point was measured at 1,011 m. On 8 March two prominent spines were seen; one broad-based spine's peak was 1,027 m in elevation when measured the next day. No dome or spine growth was observed during 9 March-12 April. During 15-28 March a slight degradation of the upper flanks was the only change in the dome.

Low-level rockfall activity occurred during early March-12 April. During March new rockfall chutes developed on the dome's SW and E sides above the Tar River valley; some large rockfalls reached the base of the talus slope on both sides of the dome. During 29 March-12 April very small rockfalls occurred down the upper flanks over Gages wall and on the upper flanks of the new dome in the SW sector.

During 15-28 March the disintegration of a steep, rocky buttress in the dome complex above the Tar River valley produced several small pyroclastic flows. A field team at Windy Hill observed the largest of these flows traveling down a narrow ravine and reaching the Tar River Estate house. The team also observed small rockfall deposits below the fumarolic area on the dome's E flanks. During 29 March-12 April continued degradation of the buttress sent rockfalls down gullies between the E face and the N flanks or down an incised central chute on the E flanks.

During 1-15 March fumarolic activity was mainly confined to a V-shaped cleft in the pre-explosion dome complex on the dome's E side. No fumarolic activity or ash venting was reported during 15-28 March. During 29 March-12 April moderate fumarolic activity was concentrated within an incised central chute on the E flanks and around a trench between the 26 December collapse scar and fresh dome material on the dome's SW sector.

Pyroclastic-flow deposits in the upper part of Tuitt's Ghaut seen on 28 February were studied in March; the deposits were composed of older material originating from the base and sides of the 22 October 1997 dome (BGVN 22:11). The remnants of this dome formed a large dark mass on the N side of the dome complex. Temperature measurements of pyroclastic-flow deposits produced in a 21 September 1997 dome collapse (BGVN 22:10) were made on 15 March. The maximum temperature found was 590°C at a depth of 1.5 m. During 29 March-12 April, a field team again visited these deposits. Using a thermocouple probe, they measured a maximum temperature of 357°C at a depth of 2 m.

Seismicity. During 1 March-12 April seismicity was low, with small numbers of earthquakes, no swarms, and low rockfall activity. Epicenter locations for all events were in the dome area. During 29 March-12 April, activity consisted principally of volcano-tectonic earthquakes that occurred at irregular intervals. The cycle of seismic amplitudes observed in February (BGVN 23:03) ceased during early March, when the period lengthened and the amplitude decayed so that discrete peaks were not apparent.

During 29 March-12 April, upgrades were completed on the broadband seismic network. Two new stations were installed at South Soufriere Hills and at Mongo Hill, providing increased azimuthal coverage. Both stations use single vertical component seismometers with corner frequencies of 1 Hz. The network now consists of seven stations.

Ground deformation. During 1-15 March GPS occupations at Whites, Long Ground, Windy Hill, Perches, Old Towne, Lees Yard, and Blakes revealed continued NE movement of the Hermitage site and slow movement of the Whites, Long Ground, and Perches sites. The line from the EDM reflector on the remains of the N crater wall (Peak B) to Windy Hill continued to shorten; shortening of 8 cm has occurred on this line since 25 January. Measurements suggested that the shortening rate may have slowed slightly.

During 15-28 March GPS occupations of Blakes, Drummonds, Old Towne, and Dagenham showed that the sites were stable with respect to Harris. Data from the station at Hermitage showed that the site was still moving NE.

During 29 March-12 April GPS occupations at Whites, Gages, Old Towne, Dagenham, Blakes, and Drummonds indicated >3 cm of WNW movement of Gages Mountain's summit had occurred since January. This radial movement away from the dome was almost identical to the movement direction of the pole to the tilt plane on the Gages Mountain summit tiltmeter. The station at Hermitage showed continued NE movement at the highest rate since September 1997. Since March 1997, this site has moved 15 cm.

Volume measurements. A kinematic dome survey consisting of photos and laser range finding binocular measurements was carried out on 10 March. Heights correlated well with previous theodolite measurements. The volume of the dome complex on 10 March was 113 x 106 m3. This figure included 29 x 106 m3 for the talus slope and 84 x 106 m3 for the dome. The volume of the dome just before the 26 December 1997 events was estimated at 115 x 106 m3.

On 30 March, a survey of the dome talus and of deposits in the top of the White River Valley was undertaken. This returned a talus volume of 36 x 106 m3, thus increasing the total dome volume to 120 x 106 m3. The deposits had accrued 8.99 x 106 m3 since a previous survey on 17 January 1997. The volume of erupted material since November 1995, including the dome and deposits, totaled 300 x 106 m3.

Theodolite measurements on 5 April revealed that the dome's highest point was the top of a large, 50-m-tall spine perched near the top of fresh material in the SW sector. The elevation of the spine's top was 1,031 m.

Environmental monitoring. No ashfall was reported on the inhabited sections of the island during 1-15 March. During 15 March-12 April, aerosol levels were low due to low volcanic activity and occasional rains. Comparatively higher aerosol concentrations on 24 March coincided with a small increase in volcanic seismicity during 2200 on 23 March to 0400 on 24 March. Slightly higher aerosol levels recorded on 7 and 8 April and may have been due to Saharan dust in the atmosphere. The Davy Hill area, affected by traffic jams at the time, showed the highest levels.

Geological Summary. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), c/o Chief Minister's Office, P. O. Box 292, Plymouth, Montserrat (URL: http://www.mvo.ms/).