Logo link to homepage

Report on Soufriere Hills (United Kingdom) — December 1998


Soufriere Hills

Bulletin of the Global Volcanism Network, vol. 23, no. 12 (December 1998)
Managing Editor: Richard Wunderman.

Soufriere Hills (United Kingdom) Continuing dome collapses and ash deposition in November

Please cite this report as:

Global Volcanism Program, 1998. Report on Soufriere Hills (United Kingdom) (Wunderman, R., ed.). Bulletin of the Global Volcanism Network, 23:12. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN199812-360050



Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Activity during November was dominated by small-volume pyroclastic flows down the Gages, White River, and Tar River valleys. The pyroclastic flows reached the sea and left a narrow, deep cleft in the dome. Ash was deposited over the whole island, but heavy rains cleared the dust from inhabited areas. Seismicity was dominated by rockfalls and volcano-tectonic earthquakes, the latter occasionally occurring in swarms. Some of the larger seismic events were felt throughout the island.

Visual observations. As in October (BGVN 23:10), volcanic activity during November was dominated by intermittent, small pyroclastic flows from all of the dome flanks. On 2 November several small rockfall events were recorded, some followed by low-amplitude tremor.

At 0821 on 3 November a larger dome collapse sent pyroclastic flows down the Tar River as far as the sea and down the White River valley as far as Galway's Soufriere. The ash cloud from this event reached >3,100 m and drifted W. Most of the ash fell S of the Belham valley.

A major dome collapse occurred at 2117 on 5 November. The pyroclastic flows from this collapse traveled down the White River valley to the sea, depositing two blocky lobes on the White River delta. The surge cloud climbed halfway up the N slope of Fergus Mountain. A small, fresh, and predominantly fine-grained pyroclastic-flow deposit was also observed in Ginkgoes Ghaut near Reids Estate. The ash cloud from this event drifted W and reached a height of ~6,200 m. The pyroclastic flows originated from a deep gully between Chances Peak and the dome above Galway's.

Two small pyroclastic flows occurred at 0920 on 8 November and at 0847 on 9 November. These traveled down the White River and the associated ash clouds reached heights of ~1,800 and 3,100 m.

At 0607 on 12 November, the largest dome collapse in the current series occurred, followed by vigorous ash venting. Pyroclastic flows traveled down Gages, Tar River, and White River valleys. The ash cloud reached a height of ~7,700 m; ashfall covered the island but mainly affected the Richmond Hill area. The pyroclastic flows that traveled down Gages valley almost reached the sea at Plymouth; some burning was observed near the port buildings. For the first time, pyroclastic flows reached the War Memorial and the Post Office. Lobes of material reached into the Amersham area and a large water tower was transported into the upper parts of Parsons. Pyroclastic flows also reached the sea at the Tar River delta and the old coastline at the bottom of the White River valley. In the weeks following this collapse there were a few small pyroclastic flows and periods of low-amplitude seismic tremor coupled with ash venting.

Activity during November cut a deep channel into the dome. The channel is ~150 m deep and 30 m wide and bisects the dome between the head of the Tar River and the top of Gages valley. The channel sides are extremely steep and overhanging in places. Several large cracks formed in various sectors of the dome, including in the area above White River and Tyer's Ghaut.

On 16 November, deposits near the War Memorial showed a temperature of 386°C at a depth of 1 m. During 28-29 November, heavy rain caused mudflows down all flanks. New material was deposited on the Belham Bridge (1 m depth), in Plymouth, and on the airport runway.

Seismicity, deformation, and environmental monitoring. A swarm of volcano-tectonic (VT) earthquakes occurred on 1 November (42 events within about 3 minutes); the largest was felt throughout the island. The hypocenters were located SW of the volcano under Chances Peak. Rockfall signals and pyroclastic flows dominated seismicity (70% of recorded events). VT earthquakes (28% of recorded events) beneath the dome often followed rapidly after the larger collapse events. There was a second swarm of VT earthquakes on 25 November with 42 events within about 5 minutes; a pyroclastic flow occurred shortly after the swarm started.

GPS measurements made during the latter part of the month in collaboration with University of Puerto Rico staff determined that Long Ground has moved ~4 cm E since March 1998.

The miniCOSPEC measured an SO2 flux of 740 metric tons per day on 2 November, similar to the flux measured the previous 2 months. Sulfur dioxide also was measured at ground level using diffusion tubes around the island. SO2 levels varied depending on the prevailing winds, but overall were lower during November than in previous months.

Geological Summary. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), c/o Chief Minister's Office, PO Box 292, Plymouth, Montserrat, West Indies (URL: http://www. geo.mtu.edu/volcanoes/west.indies/soufriere/govt).