Logo link to homepage

Report on Masaya (Nicaragua) — August 1982


Masaya

Scientific Event Alert Network Bulletin, vol. 7, no. 8 (August 1982)
Managing Editor: Lindsay McClelland.

Masaya (Nicaragua) Strong, continuous gas emission; lava lake glow

Please cite this report as:

Global Volcanism Program, 1982. Report on Masaya (Nicaragua) (McClelland, L., ed.). Scientific Event Alert Network Bulletin, 7:8. Smithsonian Institution. https://doi.org/10.5479/si.GVP.SEAN198208-344100



Masaya

Nicaragua

11.9844°N, 86.1688°W; summit elev. 594 m

All times are local (unless otherwise noted)


Emission of acid gas from Santiago Crater was strong and continuous in early August. Incandescence from the small pit in Santiago Crater's lava lake was visible at night. The gas and associated acid rain affected vegetation downwind. An explosive gas emission event occurred 6 June at 1622. As of early August, seismographs recorded constant tremor.

Geological Summary. Masaya volcano in Nicaragua has erupted frequently since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold" until it was found to be basalt rock upon cooling. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The NindirĂ­ and Masaya cones, the source of observed eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Recent lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: D. Fajardo B., INETER; R. Parnell, Jr., Dartmouth College.