Report on Fuego (Guatemala) — 29 May-4 June 2013
Smithsonian Institution / US Geological Survey
Weekly Volcanic Activity Report, 29 May-4 June 2013
Managing Editor: Sally Sennert.
Please cite this report as:
Global Volcanism Program, 2013. Report on Fuego (Guatemala) (Sennert, S, ed.). Weekly Volcanic Activity Report, 29 May-4 June 2013. Smithsonian Institution and US Geological Survey.
Fuego
Guatemala
14.473°N, 90.88°W; summit elev. 3763 m
All times are local (unless otherwise noted)
INSIVUMEH reported that rumbling and sounds resembling jet engines were heard from Fuego during 28-30 May; cloud cover often inhibited visual observations of the crater. On 29 May a lahar carrying blocks up to 50 cm in diameter traveled SE down the Las Lajas and El Jute drainages. On 30 May a plume was observed rising 200 m above the crater and drifting S. During 1-2 and 4 June explosions generated ash plumes that rose at most 800 m and drifted 5-8 km W and NW. Incandescent material was ejected 100 m above the crater and generated avalanches. On 2 June heavy rain caused lahars that traveled down the Ceniza drainage, carrying trees, logs, and blocks. On 3 June diffuse white plumes rose 200 m.
Geological Summary. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.
Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH)