Report on Bezymianny (Russia) — 9 March-15 March 2022
Smithsonian Institution / US Geological Survey
Weekly Volcanic Activity Report, 9 March-15 March 2022
Managing Editor: Sally Sennert.
Please cite this report as:
Global Volcanism Program, 2022. Report on Bezymianny (Russia) (Sennert, S, ed.). Weekly Volcanic Activity Report, 9 March-15 March 2022. Smithsonian Institution and US Geological Survey.
Bezymianny
Russia
55.972°N, 160.595°E; summit elev. 2882 m
All times are local (unless otherwise noted)
According to the Tokyo VAAC an ash plume from Bezymianny was visible in satellite images at 0310 on 15 March drifting W at an altitude of 4.9 km (16,000 ft) a.s.l., signifying renewed explosive activity. By 0600 ash plumes rose to 6.1 (20,000 ft) a.s.l. and drifted S. Ash continued to be emitted through the day. The eruption intensified and at 1322 ash plumes rose to 8.2 km (27,000 ft) a.s.l. and drifted SW. Satellite images showed block-and-ash flows descended the SE flank to the base, with dense, dark brown ash plumes rising along its path. Thermal anomalies were visible at the summit and at the end of the flow. At 1750 possible ash plumes rose to 4.3 km (14,000 ft) a.s.l. and drifted W. Ash emissions continued to be visible in subsequent satellite images. Activity again intensified, and at 0110 on 16 March ash plumes rose to 11.6 km (38,000 ft) a.s.l. and drifted NE. Ash emissions continued to be detected in images through the day.
Geological Summary. The modern Bezymianny, much smaller than its massive neighbors Kamen and Kliuchevskoi on the Kamchatka Peninsula, was formed about 4,700 years ago over a late-Pleistocene lava-dome complex and an edifice built about 11,000-7,000 years ago. Three periods of intensified activity have occurred during the past 3,000 years. The latest period, which was preceded by a 1,000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large open crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.
Sources: Tokyo Volcanic Ash Advisory Center (VAAC), Sentinel Hub