On 30 March an eruption at Zavodovski was reported and photographed by observers on a fishing vessel, as well as captured by a satellite image. A small ash plume drifted E, producing ashfall on 1/3 to 1/2 of the island. A photo showed bombs being ejected from the crater. One of the world’s largest (if not the largest) penguin colonies resides on the E side of the island and is home to 690,000 breeding pairs. The eruption occurred during molting season in March, when penguins stay ashore. A satellite image captured in May showed an eruption plume coming through the clouds.
Source: Peter Fretwell, British Antarctic Survey, personal communication
Eruption of ash and steam observed in June 2016
Remote Zavodovski Island, located in the Southern Atlantic Ocean, is the northernmost of the South Sandwich Islands, 570 km SE of South Georgia Island. The basaltic stratovolcano on the island, known as Mount Curry, has a large lava platform extending east from two parasitic cones on the side of the main edifice. Steam emissions from the summit have been observed by researchers, fishing vessels, and tourists who visit the island to see the population of over one million chinstrap penguins. The only confirmed historical eruption was that observed in 1819 by the Russian explorer Bellingshausen. In early July 2016, a photograph of ash and steam emitting from the volcano was released by the British Antarctic Survey (BAS).
While steam plumes have been observed emitting from Mt. Curry on a number of occasions, observations of volcanic ash had not been documented in modern times until June 2016. The MODIS instrument (Moderate Resolution Imaging Spectroradiometer) on NASA's Aqua satellite captured a unique image of the interaction of low-level emissions from Zavodovski and the atmosphere on 27 April 2012 (figure 1). Aerosol particles from the volcano are key to the formation of clouds, but whether they are derived from steam plumes, magmatic gases, or volcanic ash is unclear from this image.
The BBC conducted a filming expedition to Zavodovski in January 2015 to document the landscape of the island and the behavior of its resident chinstrap penguin colony; while there they observed regular puffs of steam rising from the summit, shown in their expedition report to the SGSSI Government (figure 2). Additional NASA MODIS satellite images of white plumes issuing from Mount Curry were captured by the South Sandwich Islands Volcano Monitoring Blog in January and December 2015, but are inconclusive as to the presence of volcanic ash.
The plumes in 2016 first appeared in images dated 30 March and 7 April, but the plume content beyond steam is difficult to assess. Images from 1 and 13 June 2016 also show white gas plumes. The British Antarctic Survey (BAS) reported on 6 July 2016 that Mt. Curry began erupting in March 2016. A fishing observer captured an image of an ash-and-steam eruption in June 2016 (figure 3). The BAS noted that fishing vessels in the area captured photos of the eruption with "smoke" and ash drifting to the E, covering the lower slopes of the volcano, and bombs being ejected from the crater.
Figure 3. Mt. Curry on Zavodovski island emitting ash and steam plumes during June 2016. Courtesy of British Antarctic Survey. Photo by fishing observer David Virgo. |
Satellite images confirmed that up to half of the island was coated with ash. On 20 July 2016 the Government of South Georgia and South Sandwich Islands issued a Navigation Warning noting that eruptions on Zavodovski and nearby Bristol Island were emitting significant ash and dust particles and advised Mariners to remain at least 3 nautical miles from the area.
Frequent satellite images of white plumes issuing from Zavodovski were captured in satellite images during the rest of 2016. On 29 August a white plume was drifting NE. Between 17 September and 10 October satellite images captured several white plumes drifting in various directions. On 1 November a grayish white plume was observed drifting E; on 19 and 20 November and 6 December white plumes were observed. A grayish-white plume was captured on 9 December drifting SSW, and on 17 December a large white plume was drifting SE.
References: BBC, 2015, BBC Natural History Unit filming expedition to Zavodovski Island, a report to the commissioners office, South Georgia Government, posted at www.gov.gs.
Information Contacts: British Antarctic Survey, Natural Environment Research Council, High Cross, Madingly Road, Cambridge CB3 0ET, United Kingdom (URL: https://www.bas.ac.uk/ , https://www.bas.ac.uk/media-post/penguin-colonies-at-risk-from-erupting-volcano/); Government of South Georgia and the South Sandwich Islands, Government House, Stanley, Falkland Islands, South Atlantic (URL: http://www.gov.gs/); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: http://earthobservatory.nasa.gov/); South Sandwich Islands Volcano Monitoring Blog (URL: http://southsandwichmonitoring.blogspot.com/).
2016: June
On 30 March an eruption at Zavodovski was reported and photographed by observers on a fishing vessel, as well as captured by a satellite image. A small ash plume drifted E, producing ashfall on 1/3 to 1/2 of the island. A photo showed bombs being ejected from the crater. One of the world’s largest (if not the largest) penguin colonies resides on the E side of the island and is home to 690,000 breeding pairs. The eruption occurred during molting season in March, when penguins stay ashore. A satellite image captured in May showed an eruption plume coming through the clouds.
Source: Peter Fretwell, British Antarctic Survey, personal communication
Reports are organized chronologically and indexed below by Month/Year (Publication Volume:Number), and include a one-line summary. Click on the index link or scroll down to read the reports.
Eruption of ash and steam observed in June 2016
Remote Zavodovski Island, located in the Southern Atlantic Ocean, is the northernmost of the South Sandwich Islands, 570 km SE of South Georgia Island. The basaltic stratovolcano on the island, known as Mount Curry, has a large lava platform extending east from two parasitic cones on the side of the main edifice. Steam emissions from the summit have been observed by researchers, fishing vessels, and tourists who visit the island to see the population of over one million chinstrap penguins. The only confirmed historical eruption was that observed in 1819 by the Russian explorer Bellingshausen. In early July 2016, a photograph of ash and steam emitting from the volcano was released by the British Antarctic Survey (BAS).
While steam plumes have been observed emitting from Mt. Curry on a number of occasions, observations of volcanic ash had not been documented in modern times until June 2016. The MODIS instrument (Moderate Resolution Imaging Spectroradiometer) on NASA's Aqua satellite captured a unique image of the interaction of low-level emissions from Zavodovski and the atmosphere on 27 April 2012 (figure 1). Aerosol particles from the volcano are key to the formation of clouds, but whether they are derived from steam plumes, magmatic gases, or volcanic ash is unclear from this image.
The BBC conducted a filming expedition to Zavodovski in January 2015 to document the landscape of the island and the behavior of its resident chinstrap penguin colony; while there they observed regular puffs of steam rising from the summit, shown in their expedition report to the SGSSI Government (figure 2). Additional NASA MODIS satellite images of white plumes issuing from Mount Curry were captured by the South Sandwich Islands Volcano Monitoring Blog in January and December 2015, but are inconclusive as to the presence of volcanic ash.
The plumes in 2016 first appeared in images dated 30 March and 7 April, but the plume content beyond steam is difficult to assess. Images from 1 and 13 June 2016 also show white gas plumes. The British Antarctic Survey (BAS) reported on 6 July 2016 that Mt. Curry began erupting in March 2016. A fishing observer captured an image of an ash-and-steam eruption in June 2016 (figure 3). The BAS noted that fishing vessels in the area captured photos of the eruption with "smoke" and ash drifting to the E, covering the lower slopes of the volcano, and bombs being ejected from the crater.
Figure 3. Mt. Curry on Zavodovski island emitting ash and steam plumes during June 2016. Courtesy of British Antarctic Survey. Photo by fishing observer David Virgo. |
Satellite images confirmed that up to half of the island was coated with ash. On 20 July 2016 the Government of South Georgia and South Sandwich Islands issued a Navigation Warning noting that eruptions on Zavodovski and nearby Bristol Island were emitting significant ash and dust particles and advised Mariners to remain at least 3 nautical miles from the area.
Frequent satellite images of white plumes issuing from Zavodovski were captured in satellite images during the rest of 2016. On 29 August a white plume was drifting NE. Between 17 September and 10 October satellite images captured several white plumes drifting in various directions. On 1 November a grayish white plume was observed drifting E; on 19 and 20 November and 6 December white plumes were observed. A grayish-white plume was captured on 9 December drifting SSW, and on 17 December a large white plume was drifting SE.
References: BBC, 2015, BBC Natural History Unit filming expedition to Zavodovski Island, a report to the commissioners office, South Georgia Government, posted at www.gov.gs.
Information Contacts: British Antarctic Survey, Natural Environment Research Council, High Cross, Madingly Road, Cambridge CB3 0ET, United Kingdom (URL: https://www.bas.ac.uk/ , https://www.bas.ac.uk/media-post/penguin-colonies-at-risk-from-erupting-volcano/); Government of South Georgia and the South Sandwich Islands, Government House, Stanley, Falkland Islands, South Atlantic (URL: http://www.gov.gs/); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: http://earthobservatory.nasa.gov/); South Sandwich Islands Volcano Monitoring Blog (URL: http://southsandwichmonitoring.blogspot.com/).
This compilation of synonyms and subsidiary features may not be comprehensive. Features are organized into four major categories: Cones, Craters, Domes, and Thermal Features. Synonyms of features appear indented below the primary name. In some cases additional feature type, elevation, or location details are provided.
Synonyms |
||||
Zawadowski | Ssawadowski | Sawadowsky | Prince Island | ||||
Cones |
||||
Feature Name | Feature Type | Elevation | Latitude | Longitude |
Curry, Mount | Submarine cone | 551 m | 56° 18' 0" S | 27° 34' 0" W |
|
|
There is data available for 2 confirmed Holocene eruptive periods.
2016 Mar 30 - 2016 Jun 15 ± 15 days Confirmed Eruption VEI: 1
Episode 1 | Eruption | Summit crater | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2016 Mar 30 - 2016 Jun 15 ± 15 days | Evidence from Observations: Reported | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
List of 24 Events for Episode 1 at Summit crater
|
[ 1908 Nov ] Uncertain Eruption
Episode 1 | Uncertain | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1908 Nov - Unknown | Evidence from Unknown | ||||||||||||||||||||||||
Possibly only fumarolic activity. | |||||||||||||||||||||||||
List of 3 Events for Episode 1
|
[ 1830 Sep ] Uncertain Eruption
Episode 1 | Uncertain | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1830 Sep - Unknown | Evidence from Unknown | ||||||||||||||||||||||||
Possibly only fumarolic activity. | |||||||||||||||||||||||||
List of 3 Events for Episode 1
|
[ 1823 ] Uncertain Eruption
Episode 1 | Uncertain | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1823 - Unknown | Evidence from Unknown | ||||||||||||||||||||||||
Possibly only fumarolic activity. | |||||||||||||||||||||||||
List of 3 Events for Episode 1
|
1819 Dec Confirmed Eruption VEI: 2
Episode 1 | Eruption | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1819 Dec - Unknown | Evidence from Observations: Reported | |||||||||||||||||||
List of 2 Events for Episode 1
|
There is no Deformation History data available for Zavodovski.
There is no Emissions History data available for Zavodovski.
Maps are not currently available due to technical issues.
There are no samples for Zavodovski in the Smithsonian's NMNH Department of Mineral Sciences Rock and Ore collection.
Copernicus Browser | The Copernicus Browser replaced the Sentinel Hub Playground browser in 2023, to provide access to Earth observation archives from the Copernicus Data Space Ecosystem, the main distribution platform for data from the EU Copernicus missions. |
MIROVA | Middle InfraRed Observation of Volcanic Activity (MIROVA) is a near real time volcanic hot-spot detection system based on the analysis of MODIS (Moderate Resolution Imaging Spectroradiometer) data. In particular, MIROVA uses the Middle InfraRed Radiation (MIR), measured over target volcanoes, in order to detect, locate and measure the heat radiation sourced from volcanic activity. |
MODVOLC Thermal Alerts | Using infrared satellite Moderate Resolution Imaging Spectroradiometer (MODIS) data, scientists at the Hawai'i Institute of Geophysics and Planetology, University of Hawai'i, developed an automated system called MODVOLC to map thermal hot-spots in near real time. For each MODIS image, the algorithm automatically scans each 1 km pixel within it to check for high-temperature hot-spots. When one is found the date, time, location, and intensity are recorded. MODIS looks at every square km of the Earth every 48 hours, once during the day and once during the night, and the presence of two MODIS sensors in space allows at least four hot-spot observations every two days. Each day updated global maps are compiled to display the locations of all hot spots detected in the previous 24 hours. There is a drop-down list with volcano names which allow users to 'zoom-in' and examine the distribution of hot-spots at a variety of spatial scales. |
WOVOdat
Single Volcano View Temporal Evolution of Unrest Side by Side Volcanoes |
WOVOdat is a database of volcanic unrest; instrumentally and visually recorded changes in seismicity, ground deformation, gas emission, and other parameters from their normal baselines. It is sponsored by the World Organization of Volcano Observatories (WOVO) and presently hosted at the Earth Observatory of Singapore.
GVMID Data on Volcano Monitoring Infrastructure The Global Volcano Monitoring Infrastructure Database GVMID, is aimed at documenting and improving capabilities of volcano monitoring from the ground and space. GVMID should provide a snapshot and baseline view of the techniques and instrumentation that are in place at various volcanoes, which can be use by volcano observatories as reference to setup new monitoring system or improving networks at a specific volcano. These data will allow identification of what monitoring gaps exist, which can be then targeted by remote sensing infrastructure and future instrument deployments. |
Volcanic Hazard Maps | The IAVCEI Commission on Volcanic Hazards and Risk has a Volcanic Hazard Maps database designed to serve as a resource for hazard mappers (or other interested parties) to explore how common issues in hazard map development have been addressed at different volcanoes, in different countries, for different hazards, and for different intended audiences. In addition to the comprehensive, searchable Volcanic Hazard Maps Database, this website contains information about diversity of volcanic hazard maps, illustrated using examples from the database. This site is for educational purposes related to volcanic hazard maps. Hazard maps found on this website should not be used for emergency purposes. For the most recent, official hazard map for a particular volcano, please seek out the proper institutional authorities on the matter. |
IRIS seismic stations/networks | Incorporated Research Institutions for Seismology (IRIS) Data Services map showing the location of seismic stations from all available networks (permanent or temporary) within a radius of 0.18° (about 20 km at mid-latitudes) from the given location of Zavodovski. Users can customize a variety of filters and options in the left panel. Note that if there are no stations are known the map will default to show the entire world with a "No data matched request" error notice. |
UNAVCO GPS/GNSS stations | Geodetic Data Services map from UNAVCO showing the location of GPS/GNSS stations from all available networks (permanent or temporary) within a radius of 20 km from the given location of Zavodovski. Users can customize the data search based on station or network names, location, and time window. Requires Adobe Flash Player. |
DECADE Data | The DECADE portal, still in the developmental stage, serves as an example of the proposed interoperability between The Smithsonian Institution's Global Volcanism Program, the Mapping Gas Emissions (MaGa) Database, and the EarthChem Geochemical Portal. The Deep Earth Carbon Degassing (DECADE) initiative seeks to use new and established technologies to determine accurate global fluxes of volcanic CO2 to the atmosphere, but installing CO2 monitoring networks on 20 of the world's 150 most actively degassing volcanoes. The group uses related laboratory-based studies (direct gas sampling and analysis, melt inclusions) to provide new data for direct degassing of deep earth carbon to the atmosphere. |
Large Eruptions of Zavodovski | Information about large Quaternary eruptions (VEI >= 4) is cataloged in the Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database of the Volcano Global Risk Identification and Analysis Project (VOGRIPA). |
EarthChem | EarthChem develops and maintains databases, software, and services that support the preservation, discovery, access and analysis of geochemical data, and facilitate their integration with the broad array of other available earth science parameters. EarthChem is operated by a joint team of disciplinary scientists, data scientists, data managers and information technology developers who are part of the NSF-funded data facility Integrated Earth Data Applications (IEDA). IEDA is a collaborative effort of EarthChem and the Marine Geoscience Data System (MGDS). |